252 research outputs found

    A Critical Review of Spatial Abilities in Down and Williams Syndromes: Not All Space Is Created Equal.

    Get PDF
    Down syndrome (DS, Trisomy 21) and Williams syndrome (WS) are two neurodevelopmental disorders of genetic origin that are accompanied by mild to moderate intellectual disability but exhibit distinct cognitive profiles. In this review we discuss our recent work characterizing the real-world spatial learning and memory abilities of adult individuals with DS and WS. We used several different paradigms in which participants locomote freely and have access to coherent input from all sensory modalities to investigate their fundamental egocentric (body-centered or viewpoint-dependent) and allocentric (world-centered or viewpoint-independent) spatial abilities. We found unequivocal evidence that most individuals with DS exhibit low-resolution egocentric and allocentric spatial learning and memory abilities similar to typically developing (TD) children in the same mental age range. In contrast, most individuals with DS exhibit impaired high-resolution allocentric spatial learning and facilitated response learning as compared to TD children. In comparison, whereas most individuals with WS also exhibit facilitated response learning, their low-resolution allocentric spatial learning and memory abilities are severely impaired as compared to both TD children and individuals with DS. Together with work from other laboratories using real-world or virtual reality paradigms, these findings indicate that in order to navigate in their environment most individuals with DS may use either egocentric route learning that does not integrate individual landmarks, or a low-resolution allocentric spatial representation that encodes the relationships between different locations (i.e., cognitive mapping). In contrast, since most individuals with WS are unable to build or use a low-resolution allocentric or configural representation of the environment they may use visually and verbally encoded landmarks as beacons to learn routes. Finally, we discuss the main neural structures implicated in these different spatial processes and explain how the relative preservation or impairment of specific brain functions may engender the unique cognitive profiles observed in individuals with these neurodevelopmental disorders

    Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala.

    Get PDF
    In recent years, a large population of immature neurons has been documented in the paralaminar nucleus of the primate amygdala. A substantial fraction of these immature neurons differentiate into mature neurons during postnatal development or following selective lesion of the hippocampus. Notwithstanding a growing number of studies on the origin and fate of these immature neurons, fundamental questions about the life and death of these neurons remain. Here, we briefly summarize what is currently known about the immature neurons present in the primate ventral amygdala during development and in adulthood, as well as following selective hippocampal lesions. We provide evidence confirming that the distribution of immature neurons extends to the anterior portions of the entorhinal cortex and layer II of the perirhinal cortex. We also provide novel arguments derived from stereological estimates of the number of mature and immature neurons, which support the view that the migration of immature neurons from the lateral ventricle accompanies neuronal maturation in the primate amygdala at all ages. Finally, we propose and discuss the hypothesis that increased migration and maturation of neurons in the amygdala following hippocampal dysfunction may be linked to behavioral alterations associated with certain neurodevelopmental disorders

    An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey.

    Get PDF
    The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers (3) H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory

    Low-Resolution Place and Response Learning Capacities in Down Syndrome.

    Get PDF
    Down syndrome (DS), the most common genetic cause of intellectual disability, results from the partial or complete triplication of chromosome 21. Individuals with DS are impaired at using a high-resolution, allocentric spatial representation to learn and remember discrete locations in a controlled environment. Here, we assessed the capacity of individuals with DS to perform low-resolution spatial learning, depending on two competing memory systems: (1) the place learning system, which depends on the hippocampus and creates flexible relational representations of the environment; and (2) the response learning system, which depends on the striatum and creates fixed stimulus-response representations of behavioral actions. Individuals with DS exhibited a preservation of the low-resolution spatial learning capacities subserved by these two systems. In place learning, although the average performance of individuals with DS was lower than that of typically developing (TD) mental age (MA)-matched children and TD young adults, the number of individuals with DS performing above chance level did not differ from TD children. In response learning, the average performance of individuals with DS was lower than that of TD adults, but it did not differ from that of TD children. Moreover, the number of individuals with DS performing above chance level did not differ from TD adults, and was higher than that of TD children. In sum, whereas low-resolution place learning appears relatively preserved in individuals with DS, response learning appears facilitated. Our findings are consistent with the hypothesis that the neural pathways supporting low-resolution place learning and response learning are relatively preserved in DS

    Turning round the telescope. Centre-right parties and immigration and integration policy in Europe

    Get PDF
    This is an Author's Original Manuscript of 'Turning round the telescope. Centre-right parties and immigration and integration policy in Europe', whose final and definitive form, the Version of Record, has been published in the Journal of European Public Policy 15(3):315-330, 2008 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/doi.org/10.1080/13501760701847341

    Odor supported place cell model and goal navigation in rodents

    Get PDF
    Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation

    Paradigmatic or Critical? Resilience as a New Turn in EU Governance for the Neighbourhood

    Get PDF
    Rising from the margins of EU aid documents, resilience became a centrepiece of the 2016 EU Global Security Strategy, especially in relation to the neighbourhood. While new resilience-thinking may signify another paradigmatic shift in EU modus operandi, the question that emerges is whether it is critical enough to render EU governance a new turn, to make it sustainable? This article argues that in order for resilience-framed governance to become more effective, the EU needs not just engage with ‘the local’ by way of externally enabling their communal capacity. More crucially, the EU needs to understand resilience for what it is – a self-governing project – to allow ‘the local’ an opportunity to grow their own critical infrastructures and collective agency, in their pursuit of ‘good life’. Is the EU ready for this new thinking, and not just rhetorically or even methodologically when creating new instruments and subjectivities? The bigger question is whether the EU is prepared to critically turn the corner of its neoliberal agenda to accommodate emergent collective rationalities of self-governance as a key to make its peace-building project more successful

    Anxiety, concerns and COVID-19: Cross-country perspectives from families and individuals with neurodevelopmental conditions

    Get PDF
    BACKGROUND: The COVID-19 pandemic had a major impact on the mental health and well-being of children with neurodevelopmental conditions (NDCs) and of their families worldwide. However, there is insufficient evidence to understand how different factors (e.g., individual, family, country, children) have impacted on anxiety levels of families and their children with NDCs developed over time. METHODS: We used data from a global survey assessing the experience of 8043 families and their children with NDCs (mean of age (m) = 13.18 years, 37% female) and their typically developing siblings (m = 12.9 years, 45% female) in combination with data from the European Centre for Disease Prevention and Control, the University of Oxford, and the Central Intelligence Agency (CIA) World Factbook, to create a multilevel data set. Using stepwise multilevel modelling, we generated child-, family- and country-related factors that may have contributed to the anxiety levels of children with NDCs, their siblings if they had any, and their parents. All data were reported by parents. RESULTS: Our results suggest that parental anxiety was best explained by family-related factors such as concerns about COVID-19 and illness. Children’s anxiety was best explained by child-related factors such as children’s concerns about loss of routine, family conflict, and safety in general, as well as concerns about COVID-19. In addition, anxiety levels were linked to the presence of pre-existing anxiety conditions for both children with NDCs and their parents. CONCLUSIONS: The present study shows that across the globe there was a raise in anxiety levels for both parents and their children with NDCs because of COVID-19 and that country-level factors had little or no impact on explaining differences in this increase, once family and child factors were considered. Our findings also highlight that certain groups of children with NDCs were at higher risk for anxiety than others and had specific concerns. Together, these results show that anxiety of families and their children with NDCs during the COVID-19 pandemic were predicted by very specific concerns and worries which inform the development of future toolkits and policy. Future studies should investigate how country factors can play a protective role during future crises
    corecore